The Parameterization Method for Invariant Manifolds Iii: Overview and Applications
نویسندگان
چکیده
We describe a method to establish existence and regularity of invariant manifolds and, at the same time to find simple maps which are conjugated to the dynamics on them. The method establishes several invariant manifold theorems. For instance, it reduces the proof of the usual stable manifold theorem near hyperbolic points to an application of the implicit function theorem in Banach spaces. We also present several other applications of the method. Index
منابع مشابه
Parameterization of Invariant Manifolds for Periodic Orbits I: Efficient Numerics via the Floquet Normal Form
We present an efficient numerical method for computing Fourier-Taylor expansions of (un)stable manifolds associated with hyperbolic periodic orbits. Three features of the method are that (1) we obtain accurate representation of the invariant manifold as well as the dynamics on the manifold, (2) it admits natural a-posteriori error analysis, and (3) it does not require numerically integrating th...
متن کاملThe Parameterization Method for Invariant Manifolds II: Regularity with Respect to Parameters
We study the regularity with respect to parameters of the invariant manifolds associated to non-resonant subspaces obtained in the previous article [CFdlL00].
متن کاملStatistical cosymplectic manifolds and their submanifolds
In this paper, we introduce statistical cosymplectic manifolds and investigate some properties of their tensors. We define invariant and anti-invariant submanifolds and study invariant submanifolds with normal and tangent structure vector fields. We prove that an invariant submanifold of a statistical cosymplectic manifold with tangent structure vector field is a cosymplectic and minimal...
متن کاملInvariant Manifolds for Analytic Difference Equations
We use a modification of the parameterization method to study invariant manifolds for difference equations. We establish existence, regularity, smooth dependence on parameters and study several singular limits, even if the difference equations do not define a dynamical system. This method also leads to efficient algorithms that we present with their implementations. The manifolds we consider in...
متن کاملEntropy of infinite systems and transformations
The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...
متن کامل